MATHEMATICS

GRADE 12

PAPER 1				
QUESTION	TOPICS/CONCEPTS	MARKS		
1	Algebra – Grade 10 & 11 textbooks	27		
	Factorise – all six skills.			
	 Quadratic formula – correct to two decimal places. 			
	Surd and exponential equations			
	 Quadratic Inequality – difference between or and and 			
	 Simultaneous equations - revise algebraic 			
	expressions(products)			
	Nature of roots			

QUESTION 1

1.1 Solve for x:

$$1.1.1 x^2 - 3x - 10 = 0 (3)$$

1.1.2
$$3x^2 + 6x + 1 = 0$$
 (correct to TWO decimal places) (3)

$$1.1.3 2^{x+4} + 2^x = 8704 (3)$$

1.1.4
$$(x-8)(x+2) \le 0$$
 (3)

$$1.1.5 x + 3\sqrt{x+2} = 2 (4)$$

- 1.2 A rectangle having sides of (y-3) metres and (x+2) metres has a perimeter of 24 metres and an area of 32 square metres. Calculate the values of x and y. (6)
- Show that $(1+x^m+x^{-n})^2-(1-x^m-x^{-n})^2$ is divisible by 2 for all real values of m and n. (3)

2	Number Patterns – Grade 10 textbook	12
	Linear pattern	
	 Quadratic number patterns 	
3	Number Patterns – Grade 11 textbook	12
	Arithmetic sequence/series	
	Geometric sequences/series	
4	Sequence and Series – Grade 12 textbook	16
	PROOF OF SUM OF ARITHMETIC AND GEOMETRIC	
	Sigma notation	
	Infinite series	
	Convergence	

- 2.1 Given the arithmetic series: 7 + 12 + 17 + ...
 - 2.1.1 Determine the value of T_{91} (3)
 - 2.1.2 Calculate S_{91} (2)
 - 2.1.3 Calculate the value of n for which $T_n = 517$ (3)
- 2.2 The following information is given about a quadratic number pattern:

$$T_1 = 3$$
, $T_2 - T_1 = 9$ and $T_3 - T_2 = 21$

- 2.2.1 Show that $T_5 = 111$ (2)
- 2.2.2 Show that the general term of the quadratic pattern is $T_n = 6n^2 9n + 6$ (3)
- 2.2.3 Show that the pattern is increasing for all $n \in \mathbb{N}$. (3) [16]

QUESTION 3

- 3.1 Given the geometric series: 3+6+12+... to n terms.
 - 3.1.1 Write down the general term of this series. (1)
 - 3.1.2 Calculate the value of k such that: $\sum_{p=1}^{k} \frac{3}{2} (2)^p = 98301$ (4)
- 3.2 A geometric sequence and an arithmetic sequence have the same first term.
 - The common ratio of the geometric sequence is $\frac{1}{3}$
 - The common difference of the arithmetic sequence is 3
 - The sum of 22 terms of the arithmetic sequence is 734 more than the sum to infinity of the geometric sequence.

Calculate the value of the first term. (5)
[10]

5	Functions - Grade 11 Linear, Parabola, Hyperbola and Exponential Intercepts, domain, range, asymptotes, equation of axis of symmetry, T.P, increasing/decreasing interval etc ALL characteristics/ transformations	13
6	 Functions – Grade 11 Linear and hyperbola, exponential ALL characteristics/ transformations f(x) = g(x) f(x) ≤ g(x) f(x).g(x) > 0 	14
7	Functions – Grade 12	10

The graphs of $f(x) = -\frac{1}{2}(x-1)^2 + 8$ and $g(x) = \frac{d}{x}$ are drawn below. A point of intersection of f and g is B, the turning point of f. The graph f has x-intercepts at (-3; 0) and (5; 0) and a y-intercept at C.

- 5.1 Write down the coordinates of the turning point of f. (2)
- 5.2 Calculate the coordinates of C.
- 5.3 Calculate the value of d. (1)
- 5.4 Write down the range of g. (1)
- 5.5 For which values of x will $f(x).g(x) \le 0$? (3)
- 5.6 Calculate the values of k so that h(x) = -2x + k will not intersect the graph of g. (5)

(4) [18]

5.7 h is a tangent to g at R, a point in the first quadrant. Calculate t such that y = f(x) + t intersects g at R.

Sketched below are the graphs of $f(x) = -2x^2 + 4x + 16$ and g(x) = 2x + 4. A and B are the x-intercepts of f. C is the turning point of f.

- 5.1 Calculate the coordinates of A and B. (3)
- 5.2 Determine the coordinates of C, the turning point of f. (2)
- 5.3 Write down the range of f. (1)
- 5.4 The graph of h(x) = f(x+p)+q has a maximum value of 15 at x=2. Determine the values of p and q.
- 5.5 Determine the equation of g^{-1} , the inverse of g, in the form y = ... (2)
- 5.6 For which value(s) of x will $g^{-1}(x).g(x) = 0$? (2)
- 5.7 If p(x) = f(x) + k, determine the value(s) of k for which p and g will NOT intersect. (5)

- 6.1 Given: $g(x) = 3^x$
 - 6.1.1 Write down the equation of g^{-1} in the form y = ... (2)
 - 6.1.2 Point P(6; 11) lies on $h(x) = 3^{x-4} + 2$. The graph of h is translated to form g. Write down the coordinates of the image of P on g. (2)
- Sketched is the graph of $f(x) = 2^{x+p} + q$. T(3; 16) is a point on f and the asymptote of f is y = -16.

Determine the values of p and q.

(4)

[8]

The graph of $f(x) = \frac{4}{x-3} + 4$ is drawn below. M is the point where the asymptotes of f intersect. C and D are the x- and y-intercepts respectively of f. A is the point on f that is closest to M.

- 4.1 Write down the coordinates of M. (2)
 - 4.2 Calculate the coordinates of D. (2)
 - 4.3 If y = x + t is the equation of a line of symmetry of f, calculate the value of t. (2)
 - 4.4 Determine the values of x for which $f(x) \le 0$. (4)
 - 4.5 Calculate the coordinates of A. (3)
- A single transformation is applied to f to obtain a new graph defined as $h(x) = \frac{-4}{x+3} + 4$. A' is the image of A under this transformation. Calculate the length of AA'. (2)

8	Differential Calculus – Grade 12 textbook	14
	 First Principles – Revise algebraic expressions(products) 	
	Differentiation Rules	
	 Equation of the tangent (straight line) 	
	Revise Exponents and Surds	
9	Differential Calculus	32
	Calculus graph	
	 Definining the turning point and the point of inflection of 	
	the cubic graph in relation to the graphs of f' and f''	
	Graphs interpretation	
	TOTAL	150

8.1 Determine
$$f'(x)$$
 from first principles if it is given that $f(x) = 3x^2$. (5)

8.2 Determine:

8.2.1
$$f'(x)$$
 if $f(x) = x^2 - 3 + \frac{9}{x^2}$ (3)

8.2.2
$$g'(x)$$
 if $g(x) = (\sqrt{x} + 3)(\sqrt{x} - 1)$ (4) [12]

QUESTION 7

7.1 Determine
$$f'(x)$$
 from first principles if $f(x) = -4x^2$ (5)

7.2 Determine:

7.2.1
$$f'(x)$$
 if $f(x) = 2x^3 - 3x$ (2)

7.2.2
$$D_x \left(7.\sqrt[3]{x^2} + 2x^{-5}\right)$$
 (3)

7.3 For which values of x will the tangent to $f(x) = -2x^3 + 8x$ have a positive gradient? (3) [13]

Given: $f(x) = -x^3 + 6x^2 - 9x + 4 = (x-1)^2(-x+4)$

- 8.1 Determine the coordinates of the turning points of f. (4)
- 8.2 Draw a sketch graph of f. Clearly label all the intercepts with the axes and any turning points.
 (4)
- Use the graph to determine the value(s) of k for which $-x^3 + 6x^2 9x + 4 = k$ will have three real and unequal roots. (2)
- 8.4 The line g(x) = ax + b is the tangent to f at the point of inflection of f. Determine the equation of g. (6)
- 8.5 Calculate the value of θ , the acute angle formed between g and the x-axis in the first quadrant. (2)

QUESTION 9

The graph of $f(x) = 2x^3 + 3x^2 - 12x$ is sketched below. A and B are the turning points of f. C(2; 4) is a point on f.

- 9.1 Determine the coordinates of A and B. (5)
- 9.2 For which values of x will f be concave up? (3)
- 9.3 Determine the equation of the tangent to f at C(2; 4). [11]